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1 The EUMETSAT SAF on Climate Monitoring 

The importance of climate monitoring with satellites was recognized in 1999 by EUMETSAT 
Member States when they amended the EUMETSAT Convention to affirm that the 
EUMETSAT mandate is also to contribute to the operational monitoring of climate and the 
detection of global climatic changes". Following this, EUMETSAT established within its 
Satellite Application Facility (SAF) network a dedicated centre, the SAF on Climate 
Monitoring (CM SAF, http://www.cmsaf.eu). Since the start of the CM SAF in 1999 the 
project went through three phases, i.e., the Development Phase lasting from 1999 to 2004, the 
Initial Operations Phase (IOP) and the Continued Development and Operations Phase 
(CDOP). The consortium of CM SAF currently comprises the Deutscher Wetterdienst (DWD) 
as host institute, and the partners from the Royal Meteorological Institute of Belgium 
(RMIB), the Finnish Meteorological Institute (FMI), the Royal Meteorological Institute of the 
Netherlands (KNMI), the Swedish Meteorological and Hydrological Institute (SMHI) and the 
Meteorological Service of Switzerland (MeteoSwiss). 

After focusing on the development of retrieval schemes to derive a subset of Essential 
Climate Variables (ECVs) in the development phase, CM SAF delivered to its users products 
based on Meteosat and polar orbiter data for Europe and Northern Africa supporting NMHSs 
in their provision of climate services in the IOP from 2004 to 2007. During CDOP, lasting 
from 2007 to 2012, the product validation continued, the time series were expanded and 
algorithms were further improved, while the study domain was extended from the baseline 
area to the MSG disk for the geostationary products and to include global and Arctic coverage 
for the polar orbiter products. In addition, long term climate datasets from polar orbiting and 
geostationary satellites are being generated for climate monitoring (i.e. HOAPS, METEOSAT 
and AVHRR-GAC based products).  

A catalogue of available CM SAF products is available via the CM SAF webpage, 
http://www.cmsaf.eu/. Here, detailed information about product ordering, add-on tools, 
sample programs and documentation are provided. 

2 Introduction 

This CM SAF Algorithm Theoretical Basis Document (ATBD) provides information on the 
processing chain implemented for the HOAPS data set to retrieve geophysical parameters 
from homogenized SSM/I observations and auxiliary information from AVHRR SST 
retrievals. It also provides information on the CM SAF retrieval schemes used to construct the 
data set employing Special Sensor Microwave/Imager (SSM/I) observations onboard Defence 
Meteorological Satellite Program (DMSP) platforms F08, F10, F11, F13, F14 and F15. The 
same algorithms have already been used in the Hamburg Ocean-Atmosphere Parameters and 
fluxes from Satellite (HOAPS, http://www.hoaps.org/) data set (Andersson et al. 2010). The 
document gives background information on the physics of the problem, the training and 
derivation of the statistical inversion schemes and consideration of constraints and limitations 
of the retrievals. It is based on the description of the HOAPS data set by Andersson et al. 
2010. 

At first a description of the data sources and processing chain, including a summary of 
instrument characteristics, are given, followed by an introduction to the homogenization 
method for the SSM/I radiometers, and the parameter retrieval scheme design. 

More information on the data set is contained in the product user manual [RD 2], basic 
accuracy requirements are defined in the product requirements document [RD 1], and the 
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validation of the data set versus those requirements is described in the validation 
report [RD 3]. 

The HOAPS data set contains multiple parameters derived from SSM/I observations. The 
CM SAF release of HOAPS 3.2 contains the following atmospheric and near-surface 
variables, derived for the global ice-free oceans: 

Near surface specific humidity [CM-141, NSH_HOAPS, section 5.1], 

Wind speed at 10m height [CM-142, SWS_HOAPS, section 5.2], 

Latent heat flux at sea surface [CM-143, LHF_HOAPS, section 5.3], 

Evaporation [CM-145, EVA_HOAPS, section 5.3], 

Precipitation [CM-144, PRE_HOAPS, section 5.4], 

Freshwater flux [CM-146, EMP_HOAPS, section 5.5]. 

2.1 Applicable documents 

Reference  Title Code 

AD 1 

Memorandum of Understanding between 
CM SAF and the Max-Planck Institute for 
Meteorology and Meteorological Institute, 
University of Hamburg 

 

AD 2 Cooperation Agreement  

2.2 Reference documents 

Reference  Title Code 

RD 1 CM SAF Product Requirements Document SAF/CM/DWD/PRD/1.6 

RD 2 Product User Manual SAF/CM/PUM/HOAPS/1.1 

RD 3 Validation Report SAF/CM/VAL/HOAPS/1.1 
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3 Processing chain of HOAPS SSM/I and AVHRR Data sources 

This section provides information on the processing chain implemented for the HOAPS data 
set to retrieve geophysical parameters from homogenized SSM/I observations and auxiliary 
information from AVHRR SST retrievals. 

3.1 Product definitions 

The CM SAF HOAPS data set from SSM/I provides quasi-global coverage over the ice-free 
ocean surface, i.e., within ±180° longitude and ±80° latitude. Instantaneous SSM/I retrievals 
at original swath level are used to derive the spatio-temporal averaged data sets. The products 
are available as 6-hourly composites and monthly averages on a regular latitude/longitude 
grid with a spatial resolution of 0.5° × 0.5° degrees. The temporal coverage of the data sets 
ranges from 9th of July 1987 to 31st of December 2008. More detailed information on the 

 

Figure 1: Flow chart for the original data processing chain in HOAPS from SSM/I antenna 
temperatures to geophysical products. Within CM SAF monthly mean products 
(HOAPS-G) and 6-hourly composites (HOAPS-C) are generated.  
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products and data format specifications are given in the Product User Manual [RD 2]. 

3.2 Data sources and processing 

The starting point in the data processing chain, as illustrated in Figure 1 are SSM/I antenna 
temperatures. These are converted to an internal brightness temperature (TB) data set. This 
procedure includes several instrument-related corrections, inter-sensor calibration, and the 
flagging of land and sea ice covered pixels. From the TB data set and the NODC/RSMAS 
Pathfinder SST, geophysical parameters are calculated on the native SSM/I resolution 
(HOAPS-S). Finally, the previously described gridded HOAPS products are generated from 
the scan-based HOAPS-S data. 

3.2.1 The SSM/I Instrument 

SSM/I sensors have been carried aboard the DMSP satellite series since 1987. Up to three 
radiometers have been in orbit simultaneously, as shown in Figure 2. An extensive description 
of the instrument and satellite characteristics has been published by Hollinger (1990) and 
Wentz (1991). Hence, only a very short summary of essential information is given here. The 
DMSP satellites fly in a near-circular, sun-synchronous orbit, with an inclination of 98.8° at 
an approximate altitude of 860 km. Each day, 14.1 orbits with a period of about 102 min are 
performed. The Earth’s surface is sampled with a conical scan at a constant local zenith angle 
of 53.1° and a 1400 km wide swath. A nearly complete coverage of the Earth by one SSM/I is 
achieved within two to three days. Due to the orbit inclination and swath width, the regions 
poleward of 87.5° are not covered. To date, six SSM/I instruments have been successfully 
launched aboard the F08, F10, F11, F13, F14 and F15 spacecraft. All satellites have a local 
equator crossing time between 5 and 10 A.M./P.M. for the descending/ascending node. The 
F08 had a reversed orbit with the ascending node in the morning. Also, the Earth observing 
portion of the scan on this satellite is, differently from the others, centred to the aft. Most of 
the DMSP satellites have a very stable orbit as shown in Figure 3. The temporal variation of 
the equator crossing times is less than three hours for all satellites. At the end of the HOAPS-3 
time period the orbits of F14 and F15 begin to decay noticeably, but are still within 2-3 hours 
of original time. 

The SSM/I is a seven channel total power radiometer measuring emitted microwave radiation 
at four frequency intervals centred at 19.35, 22.235, 37.0, and 85.5 GHz. All frequencies are 
sampled at horizontal and vertical polarization, except for the 22.235 GHz channel, which 
measures only vertically polarized radiation. The channels will be referred to as 19, 22, 37, 
and 85 GHz hereafter and the corresponding brightness temperatures of each channel and 
polarization as TB19v/h, TB22v, TB37v/h, and TB85v/h. 

The spatial resolution varies from 69 km by 43 km with a sampling frequency of 25 km for 
the 19 GHz channel to 15 km by 13 km with 12.5 km sampling frequency for the 85 GHz 

 

Figure 2: Temporal coverage of SSM/I instrument aboard DMSP satellite platforms for the 
HOAPS processing. 
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Figure 3: Local Equator crossing times of the DMSP satellites. 

channel. The 85 GHz channels are sampled for each rotation of the instrument (A and B-
scans) with a resolution of 128 uniformly spaced pixels, while the remaining channels are 
sampled every other scan (A-scans) with a resolution of 64 pixels. A fixed cold space reflector 
and a reference black body hot load are used for continuous onboard two point calibration. 

3.2.2 Data processing 

Antenna Temperature Tapes (ATT) from Remote Sensing Systems (RSS) as well as 
Temperature Data Records (TDR) from the National Environmental Satellite, Data, and 
Information System (NESDIS), NOAA’s Satellite and Information Service, are used as SSM/I 
input data for HOAPS. Either data source has been used during several time periods for 
various logistic reasons. An analysis of SSM/I data from different sources (Ritchie et al., 
1998), including NESDIS TDR and RSS ATT data, showed no systematic differences between 
these data sets. 

In a first step the different input data sets are pre-processed into a common internal data 
format containing navigated and calibrated antenna temperatures. The antenna temperatures 
are then converted to TBs according to Wentz (1991) using a fixed set of antenna pattern 
corrections. In addition, this procedure treats several known issues with the radiometer, 
including corrections for an along-scan bias (Wentz, 1991; Colton and Poe, 1999) and zenith 
angle variations (Furhop and Simmer, 1996). The correction coefficients for the along-scan 
correction have been updated and the along-scan correction is applied to all SSM/I channels. 
The normalisation of the brightness temperature to a fixed zenith angle using the Furhop and 
Simmer method is not available for the 85 GHz channels and thus a statistical linear 
correction is applied instead. 

For the application of the retrieval algorithms it is important that about the same area is seen 
by all channels. Due to the higher frequency, a single field of view (FOV) at 85 GHz covers 
only about 18% of the area sampled at 37 GHz (cf. e.g. Spencer et al., 1989). Since the 
85 Ghz channels are sampled twice as often in each direction compared to all other SSM/I 
channels, nine neighbouring 85 GHz pixels of the A and B-Scans are averaged down to the 
resolution of the corresponding 37 GHz pixel. The 85 GHz pixels are averaged with their 
Gaussian weighted distance from the centre FOV analogue to the 37 GHz antenna pattern. 
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3.2.3 SSM/I Instrument Homogenization 

In order to ensure a homogeneous time series of the successive SSM/Is, the slightly varying 
individual instrument characteristics have to be corrected by an inter-sensor calibration of the 
radiometers. The calibration procedure is based on the SSM/I on DMSP F11 which is selected 
as the reference for a relative intercalibration. In tests with different wind speed algorithms 
against in-situ buoy data this radiometer exhibits a reliable long-term stability. Furthermore it 
has a temporal overlap with most of the other radiometers. The SSM/Is on F08 and F15, 
which do not have a temporal overlap with F11, are calibrated to the F10 and F13 
radiometers, respectively. The inter-calibration method used is an updated version of the 
homogenization scheme described in Andersson et al. (2010). 

The calibration coefficients are determined by linear regression from match-up data sets of the 
radiometers that are based on the TBs after the along-scan bias correction and zenith angle 
normalization. The match-up data sets are constructed from oceanic TBs of each channel that 
are binned into daily global 1° by 1° grid, separately for ascending and descending orbits. For 
each radiometer a match-up data set with the selected reference radiometer is compiled from 
the collocated gridded mean TBs for at least one overlapping year. The calibration coefficients 
are then calculated by a least squares linear regression between the TB pairs of both 
radiometers, separately for ascending and descending orbits and then averaged to minimize 
the influence of diurnal cycle variations. 

Due to the accurate and stable in-orbit calibration of the SSM/I, the coefficients are 
considered to be constant during the lifetime of a radiometer (Colton and Poe, 1999) and are 
used to homogenize the measurements of different SSM/I instruments. However, the unstable 
and highly elliptical DMSP F10 orbit could lead to second order effects on the internal 
calibration which are not covered by the intercalibration match-up method and made a 
recalibration for the radiometer aboard this satellite necessary. The F10 calibration 
coefficients were determined for the years 1992 and 1996 and then linearly interpolated for 
the intermediate years. 

3.2.4 Synthesis of 85 GHz channel data 

Due to thermal problems, the SSM/I on the DMSP F08 had to be switched off in December 
1987. When the radiometer was reactivated, the 85 GHz vertical polarization channel 
exhibited significantly increased noise levels. Later, similar problems occurred with the 
85 GHz horizontal polarization channel (Hollinger,1990; Wentz, 1992; Ferraro, 1997). 
Therefore, the 85 GHz channels of the SSM/I on DMSP F08 are regarded as defective from 
April 1988 until the end of the lifetime of the radiometer and the respective original SSM/I 
data is not used in HOAPS. 

This failure affects all HOAPS parameters depending on these channel, in particular the 
precipitation retrieval. A computationally efficient way of handling this problem is to 
synthesize approximate values of the missing 85 GHz information from the remaining 
channels. The synthesis is based on a neural network approach, which is used to estimate TB 
85v/h of the 9-pixel averaged 85 GHz FOV from the other SSM/I channels (TB 19v/h, 
TB22v, and TB37v/h. The training data set for the neural network was compiled from 
randomly selected brightness temperatures of SSM/I radiometers on board DMSP F11, F13, 
and F14 from 1998. More details on the 85 GHz synthesis algorithm are given in 
Andersson et al. (2010). 

The synthesis allows the application of the same retrieval algorithms for all parameters 
throughout all analysis steps without individual replacement algorithms for each affected 
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parameter. It has, however, to be kept in mind that such a procedure cannot fully reconstruct 
the specific 85 GHz information but is a computationally convenient way of handling the 
missing data by a plausible replacement. Moreover, this method is only valid over open water. 
Over land surfaces this general approach is not applicable due to the strongly varying surface 
emissivity. 

3.2.5 Land mask and sea ice detection 

For SSM/I pixels within 50 km of any coastline and sea ice margin no geophysical parameters 
are derived in HOAPS. This is to avoid any contamination of the data by the abrupt change in 
surface emissivity between water and land or sea ice covered areas, respectively. The 
corresponding areas are flagged during the processing in the pixel-level data (see Figure 1). 

The land-sea mask is derived from the Global Land One-km Base Elevation data base 
(GLOBE, 1999). This data set is further adjusted by first removing small islands and 
landmasses with a diameter of less than 5 km, treating these areas as open water. In a second 
step the coastlines of the remaining land areas are expanded 50 km into the sea. 

To account for the varying sea ice margins, a daily sea ice mask is compiled from the HOAPS 
SSM/I TBs. These maps are created in two steps. First the total sea ice covered fraction within 
a single SSM/I FOV is computed using the NASA Team sea ice algorithm of Swift (1985). 
The resulting sea ice observations from all available SSM/I instruments are then gridded to 
common daily mean fields on a regular 0.5° x 0.5° grid. In order to distinguish between short-
lived strong rain events and persisting sea ice, which are characterized by similar TB 
signatures, only grid boxes with an average sea ice fraction above 15% for at least 5 
consecutive days are flagged as ice covered. Daily sea ice maps are then derived from this 
reduced data set by re-expanding the reliably identified sea ice areas in time and space and 
filling remaining data gaps by spatial and temporal interpolation. Finally, the resulting sea ice 
margin is extended 50 km into the ocean to avoid any spurious sea ice signal in the HOAPS 
retrievals. 

4 Auxiliary data sets 

4.1 Sea surface temperature  

To exclusively rely on satellite data for the computation of latent and sensible heat flux 
parameters, the NOAA National Oceanographic Data Center (NODC) and Miami’s Rosenstiel 
School of Marine and Atmospheric Science (RSMAS) Oceans Pathfinder Version 5.0 SST 
(Kilpatrick, 2001; Casey, 2004; NODC, 2008) product is used within HOAPS. 

In the Pathfinder data set a quality flag with a value from 0 to 7 is assigned for each pixel, 
with 7 being the highest quality observation. For the further processing in HOAPS, only 
pixels with an overall quality flag of four or higher are accepted. This conforms to the 
Pathfinder Version 4 “best-SST” product and involves several quality checks including a 
cloud screening (c.f. Kilpatrick (2001) for details). 

The Pathfinder data set consists of data from several AVHRRs, one at a time. Table 1 shows 
the individual NOAA satellites and their temporal coverage in the NODC/RSMAS Pathfinder 
V5 as used for HOAPS-3. Periods denoted with (i) refer to a year of data where interim 
coefficients from the previous year are used to calculate empirical coefficients in the 
Pathfinder SST algorithm. At the time of the processing of HOAPS-3, Pathfinder SST data 
computed with regular coefficients were not available for these periods and data based on the 
interim coefficients is used. The regular coefficients are computed from a buoy match-up data 
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set and are processed with a delay to the real-time data in order to maintain the long term 
stability of the data set (NODC, 2008). Consequently, the SST values computed using the 
interim coefficients may reveal a slight bias compared to the final data which are released 
later. 

The Pathfinder algorithm coefficients are determined by a regression of the measured ocean 
skin infrared brightness temperatures against buoy data (Kilpatrick, 2001), which means the 
derived SST technically represents a sub-skin SST with the mean sub-skin minus skin SST 
difference (cold skin effect) removed. However, the mean daytime Pathfinder SST is found to 
be roughly 0.1 K colder than in-situ SST and the night-time SST is about 0.3 K colder 
(Reynolds, 2002). The reason for this cold bias is unclear, but is most likely caused by 
undetected clouds. For most regions the value of this cold bias has roughly the same 
magnitude as the cool skin effect. Hence, the Pathfinder SST is treated as a skin SST for the 
surface flux calculations in HOAPS. 

The AVHRR Pathfinder day and night-time observations are averaged to daily mean SST 
maps with a grid resolution of 0.25°. 

In regions that are covered by clouds, no SST data is available, as such pixels are rejected by 
the quality control. Hence, the data void regions are filled by spatial and temporal 
interpolation. The interpolation procedure is as follows: 

 interpolation in time: look for a value up to 10 days forth in time and then up to 10 
days back in time. If two valid SST values are found within this time period the 
missing data is linearly interpolated. 

 Gaussian weighted spatial interpolation: at first try to interpolate with a radius of 
100 km and then with 300 km maximum distance. 

Some grid boxes may remain unfilled, e.g. due to persistent cloud cover. 

Finally, the data is remapped to native SSM/I pixel resolution. The SST value for each SSM/I 
pixel is selected from the daily map by the centre position of the respective FOV. 

In the wake of the volcanic eruption of Mt. Pinatubo in June 1991 the high load of volcanic 
aerosol contaminated the AVHRR radiance measurements. Undetected aerosol leads to a 
night-time cold bias in the daily mean SST fields (Reynolds, 1993). During the first phase for 
about 6 months following the eruption a significant bias is introduced in the SST. This affects 
the retrievals of latent and sensible heat flux in HOAPS. In 1992 the effect weakens, but may 
persist until 1993. However, for the decaying phase we consider the signal not to be entirely 

Table 1: NOAA satellite IDs for AVHRR instruments used in NODC/RSMAS Pathfinder V5. 
(i) denotes periods with interim coefficients. 

Year Satellite 

1987–1988 NOAA-09 

1989–1994 NOAA-11 

1995–2000 NOAA-14 

2000–2002 NOAA-16 

2003–2005 NOAA-17 

2005–2006 NOAA-18 

2007–2008 NOAA-18 (i) 
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spurious since an analogous response with a decay time of up to 31 months after the eruption 
is independently observed in global tropospheric temperatures and water vapour data (Soden, 
2002; Harries, 2006). 

4.2 Sea surface saturation specific air humidity 

For the derivation of the evaporation through the bulk formula, the difference in humidity, i.e. 
sea surface specific humidity minus near surface specific humidity, is calculated. The sea 
surface saturation specific air humidity is calculated by applying the Magnus formula to the 
Pathfinder V5 SST input data: 

 









bT
ew

273.16-Ta
exp 6.1078  (1) 

Where ew is in [hPa], T is temperature in [K], a= 17.2693882, b=35.86 (Murray, 1967). 

An approximate salinity correction to take into account the reduction in vapour pressure 
caused by a typical salinity of 34 parts per thousand is applied by scaling the value for pure 
water with a factor of 0.98 (Sverdrup et al., 1942): 

wsalw ee   0.98 _  (2) 

 salwsalws eslpeq __ 377901.0*622099.0(   (3) 

where qs is the saturation specific humidity in [kg/kg]; slp is the sea-level pressure, which is 
implemented with a constant value of 1013.25 hPa. 

The qs values are calculated individually for each SST observation prior to the gridding and 
remapping procedures which are the same as for the SST (see above). 

5 HOAPS Retrieval Schemes and Parameterizations 

In the following the retrieval schemes to derive HOAPS parameters are described. All 
parameters are derived from SSM/I measurements. The latent heat flux is estimated using a 
bulk aerodynamic approach employing Fairall et al. (1996b, 2003). This method requires the 
knowledge of near surface wind speed, atmospheric near surface specific humidity, and the 
SST. The latter is derived from AVHRR measurements. 

All retrievals are implemented on the SSM/I pixel level data, i.e. are derived for each valid 
SSM/I field of view. Internally the processing is done for each SSM/I scan line with a loop 
over the 64 individual scan positions. Figure 4 shows a flow chart of the geophysical 
parameter retrieval. In the first step land, coasts, and ice covered regions are excluded, 
followed by several threshold test to identify erroneous measurements and to skip the 
corresponding pixel. 

The precipitation is derived next using the neural network algorithm (c.f. section 5.4) 
followed by the wind speed (c.f. section 5.2). If the retrieval of the wind speed is not possible 
due to high liquid water content or high rain water content, all remaining parameters are also 
skipped. Atmospheric columnar water vapour and the near surface specific humidity 
(c.f. section 5.1) are the next parameters that are retrieved. 

If water vapour values greater than 80 g/kg are derived, the brightness temperatures are 
assumed to be erroneous. The pixel is set to undefined for all parameters and the loop is 
continued with the next pixel. 
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Figure 4: Flow chart for the retrieval scheme of geophysical parameters 
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The computation of the turbulent fluxes depends on the SST, which is remapped from 
AVHRR Pathfinder data to the SSM/I pixels (c.f. section 4) and is only continued if valid sea 
surface temperature and saturation specific humidity values are present. 

If precipitation (c.f. section 5.4) and evaporation (c.f. section 5.3) are retrieved the freshwater 
flux is computed. This is only the case for situations with no or very light rain. However, for 
the gridded mean products the freshwater flux is computed as the difference of the individual 
averages of the evaporation and precipitation parameters (c.f. section 5.5). 

5.1 Near surface specific humidity (CM-141) 

A direct measurement of the humidity in the layer directly above the sea surface from satellite 
soundings is difficult to obtain. Radiometers, such as the SSM/I, measure the radiation that 
originates from a relatively thick layer rather than from a single level. However, the satellite-
retrieved signal contains some information to derive the humidity in the lowermost layer of 
the boundary layer. 

On climatological scale the near surface specific humidity, qa is highly correlated with the 
total columnar water vapour (Liu, 1986). Since the water vapour content can be reliably 
derived from SSM/I brightness temperatures this relationship could be used to derive qa using 
the retrieved water vapour as a proxy. Although this method provides a reasonable estimate on 
the global monthly and climatological scale, it is not suitable to derive values of qa on 
regional scale or for individual scenes. This is especially the case when the planetary 
boundary layer is decoupled from the upper troposphere (Schlüssel, 1989). 

The algorithm that is applied here directly relates SSM/I brightness temperatures to qa instead 
of deriving qa from SSM/I-derived water vapour estimates. A multi-linear relationship from 
Bentamy (2003) is used, which is based on the two-step retrieval of Schulz (1993) and the 
refinement of Schlüssel (1995). It derives qa directly from SSM/I brightness temperatures 
using the 19 GHz, 22 GHz, and 37 GHz channels. 

An additional advantage of this multi-channel approach is the possibility of a better separation 

 

Figure 5: Normalised weighting functions for (a) a mid-latitude atmosphere, and (b) a tropical 
atmosphere for the SSM/I frequencies. (from Schulz et al., 1993) 
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of wind induced surface signals from the water vapour signal through the 19 and 37 GHz 
channels, which reduces the errors in the retrieval. 

5.1.1 Algorithm Description 

Because the 22 GHz SSM/I channel is centred on a water vapour absorption line, it is suitable 
to retrieve the atmospheric water vapour content. However, the signal from this channel is 
only appropriate to derive the total columnar water vapour. To retrieve the water vapour in the 
lower part of the boundary layer, additional information is needed. 

In order to assess the sensitivity of SSM/I measurements to variations of the near-surface 
humidity, Schulz et al. (1993) compiled a data set of 542 radiosonde and surface in situ data 
from several field experiments. The data set contains profiles from all seasons and tropical as 
well as mid to high latitudes. Using this data base, radiative transfer calculations were set up 
to simulate SSM/I radiometer signals. 

Figure 5 shows the result from the radiative transfer calculations for the weighting functions 
of the SSM/I frequencies as determined by Schulz et al. (1993). The profiles were obtained 
for two clear atmospheric cases from a mid-latitude (Figure 5a) and a tropical (Figure 5b) 
radiosonde profile. The different channels are normalized with their absolute maximum for 
better comparability. It is clearly evident that the weighting functions strongly decrease with 
height and a significant signal from the lowermost 500 m of the boundary layer is contained 
in the radiation measured by the SSM/I. This indicates, that the SSM/ I measurements are 
sufficiently sensitive to the bottom-layer-integrated water vapour in particular using the 19, 
22, and 37 GHz vertical and 19 GHz horizontal polarization measurements. 

The absolute maxima of the profiles are located in the atmospheric boundary layer close to 
the surface. Since the secondary maximum in the 22 GHz channel between 70 and 50 kPa is 
more expressed especially for the tropical case, the 19 and 37GHz measurement have to be 
considered primarily for the derivation of qa. 

A second important factor is the sensitivity of the brightness temperatures to changes in water 

 

Figure 6: Mean water vapour weighting functions for 542 globally distributed atmospheric 
situations for the lower three SSM/I frequencies. (from Schulz et al., 1993) 
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Figure 7: Correlation of near-surface specific humidity with water vapour contents in thick 
layers. The depth of each layer extends from the surface to a height z. 
(from Schulz et al., 1993) 

vapour contents in different atmospheric layers, ∂TB/∂wi, as it is shown in Figure 6. The mean 
weighting functions were calculated for 500 m thick layers below 4 km from the same 
simulation data base as above (Schulz et. al., 1993). 

While a well pronounced decrease of ∂TB/∂wi with height is detectable in the 19 and 37 GHz 
channels, the 22 GHz channel exhibits a nearly uniform response over all height levels. The 
maximum sensitivity for the 19 and 37 GHz channels is located in the lowest level with a 
stronger decrease at 37 GHz than at 19 GHz, again indicating the presence of a lower 
boundary layer water vapour signal in these channels. 

However, the correlation of a single channel with the water vapour signal from the lowermost 
500 m of the boundary layer is too weak for a single channel retrieval. Hence, a multichannel 
retrieval has to be used. An additional advantage of using the 19 and 37 GHz channels is the 
possibility to make the algorithm sensitive for wind induced surface signals and hence to 
reduce the errors in the retrieval. 

Based on the above findings, Schulz et al. (1993) derived a linear retrieval equation for the 
water vapour content (wl) in the lowermost 500 m, using a multivariate regression analysis 
with a subset of the 542 simulations. 

This resulted in a retrieval of the form: 

VVHV TaTaTaTaaw 37422319219101   (4) 

In a second step the lower boundary layer water vapour content can be linearly related to qa. 
Figure 7 shows the correlation between near-surface specific humidity and water vapour 
contents for layers with increasing depth derived from the radiosonde data set. High 
correlations greater than 0.9 are evident for a layer thickness of up to 3,000 m. For a layer of 
500 m depth the correlation is 0.96. This assumption holds true for most situations, since the 
oceanic atmospheric boundary layer is usually well mixed. This relationship is combined with 
the lower boundary layer water vapour content retrieval (Eq. 4) in a two step algorithm to 
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Figure 8: Comparisons between specific air humidity estimated from ship (COADS) 
measurements and from merged satellite observations during fall, winter, spring, and 
summer seasons from Oct 1996 to September 1997. (from Bentamy et al., 2003) 

relate SSM/I brightness temperatures to qa. Together with the above retrieval for wl, qa is 
determined by: 

149.1953.0 wqa   (5) 

Schlüssel et al. (1995) extended the database to 9,445 situations from radiosonde and surface 
observations and found a correlation of r=0.968 between both parameters. The high 
correlation justifies a direct regression based retrieval of qa from the SSM/I brightness 
temperatures instead of the two step approach. Using this assumption and the extended data 
base an improved version of the Schulz et al. (1993) retrieval was derived and used in 
HOAPS version 1. However, evaluations by Ataktürk and Katsaros (1998) revealed an 
overestimation of qa in tropical regions by these retrievals. A bias of 2 g/kg occurred in the 
inner tropics due to high total column precipitable water values. 
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Bentamy et al. (2003) showed that the chosen linear channel combination of SSM/I channels 
is sufficient for the direct estimation of the near surface specific humidity. With a sample of 
1,000 pairs from an improved data base of collocated satellite (F10, F11, F13, and F14) and 
ship data for the period October 1996 to September 1997, the regression coefficients were 
recalculated to reduce the biases. 

The new model and its coefficients are provided by the following equation as used in the 
current HOAPS retrieval: 

VVHVa TaTaTaTaaq 3742231921910   (6) 

where a0 = -55.9227, a1 = 0.4035, a2 = -0.2944, a3 = 0.3511, and a4 = -0.2395. 

Figure 8 shows a comparison of collocated satellite and ship data from Bentamy (2003). The 
satellite data were calculated using the improved model in Eq. 6. On average, the bias is 
reduced by 15% compared to the Schulz et al. (1993) model and is no longer statistically 
significant. The RMS difference between satellite estimate and ship qa observation is 
1.40 g/kg. Over the North Atlantic Ocean, where 80% of ship data are located, the maximum 
values of the difference between satellite and ship qa is about 0.25 g/kg and is found during 
the summer season, where qa values are high. Although the bias in the tropics is removed, the 
RMS values are generally higher compared to the North Atlantic values. 

5.1.2 Assumptions and Limitations 

For atmospheric situations with high liquid water content or high rain water content the 
retrieval of the near surface specific humidity is not possible, since the strong emission from 
atmospheric water is masking the signal. Hence a filter for such situations has been 
implemented using a threshold technique to determine high water content values within the 
sampled pixel. The respective values are treated as undefined in the data set. 

As the implemented retrieval is a statistical procedure, it is only as good as the quality of the 
input data set. Since the training data for the retrieval originates from ship data, not all regions 
and hence atmospheric situations may be equally well represented in the training data set. 
This is for example the case for situations with relatively warm air layer above cold water, as 
it occurs in upwelling regions, where larger errors in the retrieval may occur. 

In scenes over very warm water masses with high air humidity the satellite-retrieved qa signal 
tends to saturate. This leads to a tendency to underestimate qa for values above 20 g/kg. 

Another general issue in the training data set is that the buoy data consists of temporal 
averages of point measurements which are related to area averages of the SSM/I footprint. 
This introduces additional scatter into the data through the different scales of the data. 
However, the number of samples in the input data is large enough, to compensate for this. 

5.2 Near surface wind speed (CM-142) 

The near surface wind speed cannot be measured directly from space. Over the ocean, the 
effects of the wind friction on the surface alter the emissivity of the ocean surface in the 
microwave spectrum. Thus the wind speed is dynamically coupled to gravity and capillary 
waves and foam coverage of the ocean surface, which in turn influences the surface emissivity 
and hence the upwelling radiances. At satellite altitude, the SSM/I brightness temperatures 
(especially TB19h and TB37h) increase non-linearly with increasing wind speed (e.g. Webster 
et.al 1976). Furthermore, TB19v, TB22v, and TB37v have to be considered in order to remove 
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Figure 9: Simulated variation of SSM/I brightness temperatures with wind speed for a latitude 
summer situation (from Schlüssel and Luthardt, 1991). 

the atmospheric contribution to the radiometric signal, which would otherwise tamper the 
wind induced surface signatures. 

Figure 9 shows the dependence of simulated SSM/I brightness temperatures on the wind 
speed. Especially for the horizontally polarized 37 GHz and 19 GHz channels a strong 
dependence on the wind speed is evident. The signal for the vertically polarized channels is 
less pronounced, but also noticeable. With increasing wind speed the polarization differences 
of the 19 GHz and 37 Hz channels decrease, as is shown in Figure 10 from globally 
distributed simulations by Schlüssel and Luthardt (1991) 

This behaviour has been proven by observations and was used for the derivation of relatively 
simple linear wind speed algorithms (e.g. Goodberlet, 1989). However, such algorithms do 
not describe the non-linear evolution of the brightness temperatures very accurately. Physical 
retrievals or more sophisticated statistical models do allow to account for the non-linearity of 
the problem and additionally to deal with different atmospheric conditions such as clear sky 
or cloudy regimes. This is particularly important in situations where the atmospheric moisture 
increases and the relation of the observed brightness temperatures on the wind speed becomes 
significantly non-linear (Petty and Katsaros, 1992, 1994). Within the HOAPS data set a 
statistical neural network based retrieval is used. This approach has shown to result in good 
performing retrievals (Stogryn et al., 1994; Krasnopolsky et al., 1995). 
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Figure 10: Simulated brightness temperature differences T37v – T37h for 281 globally 
distributed ocean-atmosphere situations (from Schlüssel and Luthardt, 1991). 

5.2.1 Algorithm Description 

The HOAPS wind speed algorithm follows a neural network approach after Krasnopolsky et 
al. (1995). Stogryn et al. (1994) and Krasnopolsky et al. (1995) demonstrated the applicability 
of neural networks to derive wind retrieval schemes based on SSM/I measurements. These 
algorithms showed the advantage of being capable to reliably retrieve wind speeds under 
cloudy conditions, which is important to retrieve information from active weather systems. 

Generally, the ocean surface wind speed algorithm relates an input vector P of the measured 
brightness temperatures to an output vector of the geophysical parameter(s) G through a 
transfer function f: 

)(PfG   (7) 

where the transfer function is determined using a neural network in this case. 

Following this approach, the wind speed is estimated using a fully connected 3-layer feed 
forward neural network, composed of one input layer utilizing TB19v/h, TB22v, and 
TB37v/h, a hidden layer with three neurons and an output layer with one neuron, the wind 
speed. All three neurons in the hidden layer are non-linear with the sigmoid function tanh as 
the unit’s activation function. The output neuron is linear in order to maximize the networks’ 
extrapolation capabilities. The layout of the neural network is shown in Figure 11. 

Two different data sets were used to serve as input for the training of the neural network. One 
is derived from radiosonde profiles and radiative transfer simulations and a second one from 
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Figure 11: Neural network architecture of the wind speed retrieval. 

collocated SSM/I and buoy observations. This approach ensures the representativeness of 
global input data with a wide range of atmospheric situations of the input and output data of 
the neural network. 

The radiosonde data set consists of about 2,000 globally distributed atmospheric profiles. The 
near surface wind speed is assigned to each profile at equidistant steps of 2 m/s within a range 
from 2 to 30 m/s. The radiation emitted from the ocean surface is calculated with the surface 
emissivity model of Bauer (2001) and the top of the atmosphere radiance is calculated with 
the radiative transport scheme of Schlüssel and Emery (1990) 

The buoy data set is compiled using match-ups between SSM/I F11 brightness temperatures 
(TBs) with near-surface wind speed measurements from 20 buoys from the National Data 
Buoy Center (NDBC) and 59 buoys from the Tropical Atmosphere/Ocean (TAO) array for the 
years 1997 and 1998. The buoy wind speed data represent hourly 8 minute mean values. The 
criterion of a maximum difference of 30 minutes and 50 km between satellite and buoy 
observations resulted in a match-up data set of about 470,000 samples for the chosen period. 
The buoy wind speed measurements were individually converted to a height of 10 m wind 
using a logarithmic wind profile assuming neutral stratification using the Fairall (1996) 
scheme. 

Both data sets are then combined by collecting all data samples in 2 m/s wide wind speed 
bins, ensuring that all parts of the wind spectrum are equally weighted. The neural network’s 
training data set is then compiled by taking an equal number of randomized samples from 
each of the wind speed bins. The resulting data set consists of about 15,000 samples. By 
taking randomized samples separately for each bin, the input TBs cover the whole possible 
range of atmospheric conditions including high water vapour observations from the TAO 
buoys. The lower wind speed ranges are mixed with data samples from both data sets, while 
most samples larger than 15 m/s originate from the set of radiative transfer calculations. 

Figure 12 shows the performance of the wind speed retrieval compared to the algorithms of 
Schlüssel and Luthardt (1991) and Stogryn et al. (1994). Applied to the verification data set, 
the neural network wind speed algorithm exhibits a very low bias of −0.02 m/s, a standard 
deviation of 1.5 m/s, and a correlation coefficient of r = 0.98. The standard deviation for the 
HOAPS neural network algorithm is much lower compared to 4.0 m/s and 5.26 m/s for the 
two other retrievals. 

23 
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Figure 12: Comparison of the HOAPS-3 neural network wind speed retrieval (black), the 
algorithms of Schlüssel and Luthardt (1991) (red) and Stogryn et al. (1994) (blue) against 
the verification data set of the neural network algorithm. The verification data set contains 
wind speed measurements from buoys and radiosonde measurements. The latter are binned 
in 2 m/s steps, resulting in discrete intervals for higher wind speeds 

When the entire buoy data set is used (not shown) the bias is 0.08 m/s, with a standard 
deviation of 1.65 m/s and r = 0.83. Comparable values were found by Winterfeldt et al. (2010) 
who compared wind speed from HOAPS, NCEP, and the QuikSCAT/SeaWinds scatterometer 
with buoy data from the North Sea and North Atlantic. The comparisons for the HOAPS wind 
speed algorithm showed a mean RMS of 2 m/s for near coastal as well as for open ocean 
regions. 

In contrast to the neural network algorithm the other wind speed retrievals shown in Figure 12 
exhibit a strong tendency to saturate at high wind speeds. This results in an overall 
underestimation with biases of −2.1 m/s for the Schlüssel algorithm and −4.9 m/s for the 
Stogryn algorithm. 

5.2.2 Assumptions and Limitations 

For atmospheric situations with high liquid water content or high rain water content the 
retrieval of the near surface wind speed is not possible, since the strong emission from 
atmospheric water is masking the signal. Hence a filter for such situations has been 
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implemented using a threshold technique to determine high water content values within the 
sampled pixel. 

As the implemented retrieval is a statistical procedure, it is only as good as the quality of the 
input data set. While the spatial representativeness of the data set is ensured, it is impossible 
to include every atmospheric situation. Hence, some extreme situations might not be included 
in the training data set. Here the extrapolation capabilities of the neural network should ensure 
reasonable retrievals. 

Another issue in the training data set is that the buoy data consists of temporal averages of 
point measurements which are related to area averages of the SSM/I footprint. This introduces 
additional scatter into the data through the different scales of the data. However, the number 
of samples in the input data is large enough, to compensate for this. 

5.3 Turbulent Heat Flux Parameterization and Evaporation (CM-143, CM-145) 

Latent and sensible heat fluxes (Ql and Qs, respectively) are an important mechanism in the 
earth’s energy budget, through which about 20% of the total radiation that is absorbed by the 
earth’s surface is transferred back to the atmosphere (Trenberth, 2009). The direct 
measurement of these fluxes with space borne sensors is not possible. However, they can be 
estimated from wind speed and sea-air humidity and temperature differences using a bulk 
aerodynamic approach of the form: 

)( asEEl qquCLQ    (8) 

and 

)( asTps TuCcQ    (9) 

where ρ is air density, cp is specific heat of the air at constant pressure, u is the wind speed at 
10 meters height, LE is the latent heat of evaporation, CT is the Stanton number, CE is the 
Dalton number, Ts is the surface skin temperature (here SST), θa is the potential air 
temperature, qs is the saturation specific humidity at the sea surface, and, qa is the specific 
humidity at the 10 m atmospheric measurement level. 

Nearly all of these geophysical parameters needed to derive the fluxes can be retrieved 
directly or indirectly from satellite observations. As a matter of principle all parameters could 
be derived from microwave radiometer data, apart from the air temperature and the transfer 
coefficients CT and CE. However, the retrieval of the SST in the infrared spectrum is possible 
with a higher accuracy than in the microwave spectrum. In HOAPS, the parameterization of 
the latent and sensible heat transfer coefficients is based on the Coupled Ocean–Atmosphere 
Response Experiment (COARE) bulk aerodynamic approach of Fairall (1996, 2003). The 
sensible heat flux is not part of the HOAPS parameters released through the CM SAF. 

The following section covers the theoretical background of the parameterization for the latent 
heat, resp. evaporation, retrieval through the COARE aerodynamic bulk approach. The 
algorithm itself does not necessarily depend on satellite retrievals. However, the relevant input 
parameters are obtained from satellite data within HOAPS. For the retrieval of the latent heat 
flux these are: 

 Wind speed at 10 m height (c.f. section 5.2), 
 Near surface specific humidity (c.f. section 5.1), 
 Sea surface temperature (c.f. section 4.1), 
 Sea surface saturation specific humidity (c.f. section 4.2). 
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5.3.1 Background on similarity relationships and flux algorithms 

In the following a short introduction to the theory behind flux retrievals will be given. More 
complete information on flux methods can be found in related publications (e.g. Smith et al., 
1996 or Fairall et al., 1997). 

The conservation equation for the ensemble mean of variable x, denoted as X, is 

 
xhh I

z

xw
UX

t

X









 (10) 

where horizontal components are denoted by the subscript h, w’ represents the vertical wind 
fluctuations, and Ix represents the source term. 

The Reynolds flux enclosed in parentheses is the quantity, which is of interest for the 
retrieval. In this case it would be the latent heat flux Ql. 

Several methods can be used to determine this quantity. One possibility is a direct 
measurement of the spatial or temporal development of w and x and computing their mean 
product, the so called covariance or eddy-correlation method. 

Due to difficulties in making covariance measurements over the ocean on large horizontal and 
temporal scales with sufficient coverage, a variety of different approaches to make flux 
measurements have been developed. Additional complications, such as sea spray and salt 
particles as well as the movement of the measurement platform and disturbances by the 
equipment require other methods than the direct flux measurements. There are several indirect 
estimates, such as the inertial-dissipation method or budget methods (e.g. Fairall and Larsen 
1986; Edson et al. 1991). 

If information with a high temporal and spatial resolution is not available, algorithms have to 
be applied that rely on the parameterization of the surface using bulk meteorological variables 
(e.g., surface temperature, surface air temperature, humidity, and wind). These parameters can 
be measured relatively easy either in situ or remotely. 

In HOAPS the COARE bulk flux algorithms are used. These are based on the Monin-
Obukhov similarity theory (MOST). The application of MOST to atmospheric parameters is 
not general, such as covariance methods, but is used to estimate surface fluxes only. Through 
the bulk formulas turbulent fluxes are derived from mean values of surface meteorological 
variables such as surface temperature, wind, and surface air temperature and humidity. 

The basic approach of MOST is to scale the mean and turbulent properties of the dynamical 
variables by combinations of surface fluxes, while their height dependence is described by the 
ratio of the height above the surface to the Monin-Obukhov length L (Fairall, 1997, 2003). 
MOST is one of the most widely used scaling theories in meteorology and has been applied 
extensively over the ocean and forms the basis of several surface flux estimation methods. In 
the following a short introduction to the basics of the COARE algorithms will be given 
according to Fairall (1996, 2003).  

5.3.1.a Bulk scaling theory 

The bulk fluxes are derived from mean quantities of basic parameters based on MOST: 

XSCXSccxw xdx  2121  (11) 
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where x represents parameters such as the wind components u and v, the potential temperature 
θ, or the water vapour specific humidity, q. cx and cd are the bulk transfer coefficients for the 
variable x and wind speed (here subscript d). Cx is the total transfer coefficient. 

ΔX denotes the air-sea difference of the mean value of the variable x: 

 zXXX sea   (12) 

The mean wind speed S in Eq. 11 includes the mean U and V components as well as a 
gustiness part (Ug): 

 21222
gUVUS   (13) 

Ug accounts for the sub-grid-scale variability in the wind field and is parameterized 
depending on the surface stability.  

The transfer coefficients in Eq. 11 are also calculated depending on the surface stability. This 
relationship is given by the MOST: 
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where the subscript n denotes the neutral (ζ=0) stability state with Ψx=0, Ψx is an empirical 
function in the bulk algorithm that describes the stability dependence of the mean profile, κ is 
von Karman’s constant, z is the height of measurement of the mean quantity X(z), and zox is 
the roughness length which characterizes the neutral transfer properties of the surface for the 
quantity, x. 

The MOST stability parameter, ζ (= z/L), is given by 
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where T is the temperature, g the acceleration due to gravity, and w’ u’ denotes the streamwise 
component. 

For equation 15 the following MOST scaling parameters can be defined for velocity, 
temperature and humidity: 
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(u* is also known as the friction velocity). 

These scaling parameters can be computed independently from the transfer coefficient given 
in Eq. 14 and are obtained by iteration within the bulk algorithm. 
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The equations 11-13 and 15 represent the basis for a bulk flux algorithm. Hence, such a model 
must contain parameterizations for the roughness lengths (or, equivalently the transfer 
coefficients) and the empirical profile stability functions Ψx. 

5.3.2 Algorithm Description 

HOAPS-3 latent and sensible heat fluxes are parameterized using the COARE bulk flux 
algorithm version 2.6a (Bradley et al., 2000), which is an updated version of the COARE 2.5b 
algorithm (Fairall et al., 1996), based on an extended flux database containing covariance 
measurements from higher latitudes and under stronger wind conditions. With minor 
modifications of physics and parameterizations to the version 2.6a, the algorithm is equivalent 
to the algorithm published as COARE 3.0 by Fairall et al. (2003). 

The COARE 3.0 algorithm is derived from more than 5000 direct covariance flux 
measurements collected over the global oceans. Further updates to the previous version 2.5 
were a variable Charnock parameter, a new roughness length parameterization for wind 
speeds up to 20 m/s, and adjustments to the basic profile stability functions to improve the 
results under near-stable boundary layer conditions.  

The stability dependent MOST scaling parameters (Eq. 16) and wind gustiness Ug (Eq. 13), 
which accounts for sub-scale variability, are estimated iteratively in the COARE algorithm. 

The algorithm is run for each SSM/I pixel where all necessary input data are available. These 
are: 

 wind speed  u (c.f. section 5.2) 
 near surface specific humidity qair  (c.f. section 5.1) 
 sea surface saturation specific humidity qsea (derived from SST, c.f. section 4.2) 
 skin temperature Ts (SST, c.f. section 4.1) 
 air temperature Tair (derived from qair  and SST, c.f. section 5.3.3)  

The implementation of the COARE algorithm in HOAPS omits the warm-layer code, since no 
continuous diurnal cycle information on the surface radiation budget is available from SSM/I 
or AVHRR measurements. These are needed to infer the warm layer evolution and cool skin 
effect. Furthermore, the code for the precipitation flux is also not implemented in the HOAPS 
retrieval. 

The liquid water evaporation equivalent of the latent heat flux is related to the latent heat flux 
by:  

 0El LQE   (17) 

where ρ0 is the freshwater density as a function of temperature (Fairall, 1996). 
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The parameterization code is structured as follows (only the parts relevant for the latent heat 
flux retrieval are shown): 

Step 1: 

Data input of constant variables. 

 Input atmospheric measurement heights. (10m) 

 Input inversion height, stratification stability criterion (600m) 

 surface pressure (1013.25 hPa) 

 Set all predetermined constants (von Karman, etc.) 

 

Main Loop 

Step 2: 

 Input a line of data from time series: u, Ts, qair, qsea 

Step 3: 

 Compute first guess transfer coefficients and u*, T*, and q*. 
Compute all temperature dependent constants. 

 Set loop count to 0 

Step 4:  

Stability iteration loop (3 iterations): 

 Compute parameters: 

 ζ (Eq. 15) 

 z0, using wind speed dependent Charnock parameter above 10 m/s 

 neutral transfer coefficients (Eq. 14) 

 Compute stability dependence: 

 Ψ function and stability dependent transfer coefficients (Eq.14) 

 if unstable, compute wind gustiness Ug (Eq. 13) 

 θ*, q*, u* (Eq. 16) 

 compute latent heat flux (Eq. 11) 

 Increment loop count; if loop count < 3, go to Step 4 

Step 5: 

 not used in HOAPS (computation of additional fluxes and scaling parameters) 

Step 6: Go to Main Loop 

 The total transfer coefficient CE (Dalton number) follows from Eq. 11. 
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5.3.3 Assumptions and Limitations 

While the COARE algorithm itself depends on some assumptions, the main limitations stem 
from the satellite retrieved input parameters wind speed, near surface specific humidity, and 
sea surface saturation specific humidity (derived from SST). Uncertainties in the retrieval 
procedures of these parameters are described in the relevant documents.  

Due to the inability to derive the surface wind speed from SSM/I in cases of high atmospheric 
water content, i.e. precipitation, no values are retrieved for such situations. 

Daily mean SST fields are used, which are calculated from AVHRR measurements. This may 
lead to errors in the flux estimates in certain regions with a strong diurnal cycle of the SST. 

The COARE algorithms include a module to estimate the diurnal evolution of the oceanic 
warm layer. This part is disabled in the HOAPS retrieval, as it would require continuous 
radiative flux measurements for the whole day, which are neither available from the SSM/I 
nor the AVHRR. 

As the implemented near-surface humidity retrieval is a statistical procedure (see section 5.1), 
it is only as good as the quality of the input data set. Since the training data for the retrieval 
originates from ship data, not all regions and hence atmospheric situations may be equally 
well represented in the training data set. This is for example the case for situations with 
relatively warm air layer above cold water, as it occurs in upwelling regions, where larger 
errors in the retrieval may occur. In scenes over very warm water masses with high air 
humidity the satellite-retrieved qa signal tends to saturate. This leads to a tendency to 
underestimate qa for values above 20 g/kg. 

For the derivation of θ*, the near surface air temperature is needed. Since it is not possible to 
measure this parameter directly from space, it is estimated using the mean of two simple bulk 
approaches: 

(a) The satellite derived near surface specific humidity is assumed to be at a constant 
relative humidity of 80% as proposed by Liu et al. (1994). 

(b) A constant temperature difference of 1 K between sea surface and air temperature is 
assumed (Wells and King-Hele, 1990). 

On climatological scale these assumptions are valid for the majority of oceanic conditions. 
However, in regions with strong stable stratification of the atmospheric surface layer, this 
approach will affect the quality of sensible heat flux estimates. The impact of these 
assumptions on the latent heat flux retrieval is smaller since the air temperature is not directly 
used in the bulk formula and has only a secondary effect on the parameterization as it is used 
in the stability estimation of the atmosphere (Liu et al., 1994). 

The COARE 2.6a/3.0 parameterizations are derived from flux measurements data containing 
situations with wind speeds in the range of 0-20 m/s. The accuracy described by Fairall 
(2003) is within 5% for wind speeds of 0–10 m/s and 10% for wind speeds between 10 and 
20 m/s. For higher wind speeds the accuracy may decrease further. 

Although the underlying data base has been extended for the recent versions of the COARE 
algorithm, most of the data stems from tropical regions of the pacific. However, there seem to 
be no implications for global application of the algorithm from this limitation as Brunke et. al. 
(2003) found the COARE algorithm to be one of the least problematic in a comparison of 
different bulk flux estimates over the tropical and midlatitude oceanic regions. 
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5.4 Precipitation (CM-144) 

Microwave based retrievals of precipitation are based on the direct interaction of the radiation 
field and the hydrometeors (water droplets, ice particles). Emission from and scattering at 
cloud and rain particles increase the brightness temperatures at small frequencies and decrease 
the brightness temperatures at high frequencies relative to the radiometrically cold sea 
surface. 

A neural network is used to derive a statistical retrieval for the precipitation from SSM/I 
brightness temperatures. The neural network was trained with precipitation rates retrieved 
from assimilated brightness temperatures in a 1D-Var scheme from the ECMWF. The 
resulting HOAPS precipitation retrieval is a statistical algorithm which only depends on 
SSM/I brightness temperatures as input and does not need first guess or other ancillary data. 

5.4.1 Algorithm Description 

Microwave based retrievals of precipitation are based on the direct interaction of the radiation 
field and the hydrometeors (water droplets, ice particles). In particular over the ocean the 
window channels of the SSM/I are well suited do detect precipitation. With the sea surface as 
a relatively homogeneous and radiometrically cold background, precipitating clouds systems 
are detectable by the emission signal of the hydrometeors and scattering of upwelling 
radiation at ice particles. (e.g. Liu and Curry, 1992, Weng and Grody, 1994) 

The emission from clouds and liquid hydrometeor particles at low frequencies results in a 
strong contrast to the sea surface background and causes a strong increase of the brightness 
temperatures measured by the radiometer on the satellite. 

The brightness temperatures at high frequencies show a strong decrease with increasing 
precipitation due to the scattering of radiation by frozen hydrometeors at the rain cloud top. A 
substantial attenuation of the ocean surface background signal occurs for high rain rates. 
These situations are mostly related to convective systems in which large amounts of ice 
particles are generated and transported to the cloud top. 

These two nonlinear effects allow to derive precipitation algorithms for microwave 
radiometers, which can be either based on the scattering signal, the emission signal, or a 
combination of both. 

5.4.2 Precipitation Neural Network Algorithm 

Generally, the ocean surface precipitation algorithm relates an input vector P of the measured 
brightness temperatures to an output vector of the geophysical parameter(s) G through a 
transfer function f: 

)(PfG   (18) 

where the transfer function is determined using a neural network in this case. 
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Figure 13: Neural network architecture of the precipitation retrieval algorithm. 
(from Andersson et al., 2010) 

For the precipitation algorithm a fully connected 3-layer feed forward network was 
constructed that includes: 

 an input layer with six neurons at TB19v/h , TB22v , TB37v/h , and TB85v  

 a hidden layer with three non-linear neurons using the tanh function as the activation 
function and 

 an output layer with one linear neuron, the precipitation rate. 

 additional direct linear connections from TB19v and TB22v to the output neuron 

A schematic representation of the neural network architecture is shown in Figure 13. 

The training data set for the neural network is based on radiative transfer calculations as 
described in Bauer et al. (2006a,b). The data set contains one month (August 2004) of 
assimilated SSM/I TBs and the corresponding ECMWF 1D-Var retrieved precipitation values 
of the European Centre for Medium-Range Weather Forecast (ECMWF) model. 

Using precipitation values from the operational variational analysis to compile the training 
data set not only ensures the statistical representativeness of the input data, it also makes use 
of the advantage to have the background meteorological surface fields and profiles consistent 
with the measured SSM/I brightness temperatures. Moreover, it allows to construct a training 
data set from a large number of samples based on a sophisticated radiative transfer model. 

This data set covers a wide variety of globally distributed rainfall events including extreme 
rainfall in hurricanes and snowfall at high latitudes. However, as it consists of more than 2.5 
million data samples, it must be filtered in order to ensure good coverage and equal weight of 
all possible input TB combinations. Hence it was binned in a two-dimensional grid using 
TB22v and the polarization difference TB19v – TB19h as axis. The final training data set was 
then compiled by randomly taking an equal number of samples from each bin, which makes 
about 110,000 data samples in total of which only 50% were actually used for training. In 
order to avoid an inappropriately high influence of the larger uncertainties at higher 
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precipitation rates, the training values were scaled non-linearly by the following 
transformation, with R* representing the transformed precipitation rate: 

)1(10log*  RR  (19) 

A lower threshold value is applied to the algorithm, below which the precipitation signal is 
considered to be zero. From experience with the formerly used algorithm, a value of 0.3 mm/h 
turned out to be an appropriate limit for distinguishing between a real precipitation signal and 
background noise. 

The results of this training procedure are depicted in Table 2. The first line shows the quality 
of the derived algorithm compared to the unused second half of the training data set, the 
verification data set. Due to the strong peak of the distribution in case of low precipitation 
rates, the mean precipitation rate is only about 0.25 mm/h. The derived algorithm reproduces 
the test cases with a correlation of r = 0.95, a very small bias and a RMS of about 0.06 mm/h, 
which represents the theoretical algorithm accuracy. Testing the algorithm against the 
complete ECMWF data set yields a lower mean value of 0.16 mm/h, which is due to the 
larger sample size compared to the verification data, a bias of −0.06 mm/h, and a RMS of 0.16 
mm/h. When a lower cutoff of 0.3 mm/h is applied to the ECMWF data set as it is done in the 
HOAPS retrieval, the mean precipitation rate increases to 0.78 mm/h. Bias and RMS are very 
low with values of −0.17 mm/d and 0.34 mm/h, respectively. The correlation is in the range of 
the two previous cases with r = 0.91. 

The detection rates of the algorithm compared to the entire ECMWF data set are 93.4% 
correctness for the raining and rain-free cases, with a probability of rain detection of 70.5% 
and a false alarm rate of 20.4%. 

Figure 14a shows the results of the training procedure as a comparison of the verification data 
set, which has not been used in the training procedure (see above), with the new neural 
network algorithm, the retrieval of Bauer and Schlüssel (1993) (HOAPS II), and the scattering 
algorithm of Ferraro (1997). As expected, the neural network performs significantly better in 
reproducing the rain rates of the verification data set compared to the other data sets. The 
Bauer algorithm exhibits a systematic underestimation of the precipitation. For rain rates 
exceeding 7 mm/h the neural network algorithm also exhibits an underestimation compared to 
the verification data set. The few cases with rain rates exceeding 12 mm/h in the verification 
data set are reproduced by the neural network and the Ferraro scattering algorithm with 
comparable values around 10 mm/h. The latter performs not well for lower rain rates due to 
the missing emission signal in the algorithm. 

Figure 14b shows accumulated histograms of the rain rates derived with the three different 
precipitation algorithms on a logarithmic scale. The histogram bins represent the accumulated 

Table 2: Accuracies of the neural net algorithm for precipitation. N = number of samples; 
mean, bias, and RMS are in mm/h. (see text) 

Data set N Mean Bias RMS R 

Verification data set 54,850 0.255 -0.007 0.062 0.950 

Complete data set 2,596,899 0.158 -0.063 0.157 0.915 

Complete data set 
cutoff 0.3 mm/h 

3,57,492 0.780 -0.166 0.342 0.907 
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Figure 14: Comparison of different precipitation algorithms. (a) shows the retrieved 
precipitation rates of the neural network algorithm (black), the Bauer and Schlüssel (1993) 
algorithm (red) and the Ferraro (1997) algorithm (blue) against the precipitation rates from 
the verification data set. (b) shows the accumulated histogram of precipitation as the 
fraction of total precipitation for the different retrievals and the verification data set 
between 0.2 mm/h and 30 mm/h. (from Andersson, 2010) 

fraction of the total reference precipitation from the verification data set in the range from 
0.2 mm/h up to 30 mm/h. About 90% of the total ECMWF precipitation comes from rain rates 
up to 1 mm/h. The new neural network algorithm overestimates the rain rate below 0.3 mm/h 
and then slightly underestimates rain rates above 0.5 mm/h. This leads to a small 
underestimation of the total precipitation. Applying a lower threshold at 0.3 mm/h results in a 
total bias of −0.166 mm/h (Table 2). 

5.4.3 Assumptions and Limitations 

The neural network approach that is used for the precipitation here, resembles a statistical 
approximation of the input data set, which is in this case the physical ECMWF 1D-Var 
retrieval. Hence, the quality of a statistical retrieval strongly depends on the quality of the 
input data set. 

Here the well established ECMWF radiative transfer and assimilation schemes are used to 
generate the input data set. However, a complete validation of precipitation data over the 
ocean is nearly impossible. This accounts for both, the training data as well as for the derived 
satellite retrieval. 

Another point is the representativeness of the training data for all kinds of different 
atmospheric situations and surface conditions. This requirement is likely fulfilled by the 
training data set as it contains more than 50,000 globally distributed data samples. 

Another general limitation of the retrieval is the detectability of precipitation at low rain rates. 
The current retrieval uses a lower cutoff value of 0.3 mm/h. Hence, these light rain events are 
not captured by the retrieval. 

Further information on the accuracy of the precipitation parameter are given in the validation 
Report [RD 3]. 

34 
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5.5 Freshwater flux (CM-146) 

The ocean surface freshwater flux is computed as the difference of evaporation minus 
precipitation. Hence, the product relies on the output of the individual HOAPS algorithms, see 
section 5.3 and 5.4 for details. The freshwater flux at the sea surface is defined as positive for 
a flux that is directed from the ocean into the atmosphere. 

The freshwater flux product is not computed directly from the SSM/I swath data, since the 
concurrent retrieval of precipitation and evaporation is not possible for the most cases with 
precipitation. 

In order to retrieve the freshwater flux, the input parameters precipitation and evaporation are 
averaged separately. Then the freshwater flux is computed for the gridded data products for 
each grid box as the difference between the spatial and temporal means of evaporation and 
precipitation. 

In certain regions with frequent precipitation this method may introduce a slight clear sky bias 
from the evaporation fields in the resulting freshwater flux fields (see section 5.5.1). 

Due to the method of calculating the freshwater flux from the mean evaporation and 
precipitation fields, no statistical variables like the number of observations or standard 
deviation are available in the gridded freshwater flux data products. 

5.5.1 Assumptions and Limitations 

Since it is not possible to retrieve the evaporation in situation with precipitation (except for 
light rain), the freshwater flux cannot be determined for individual SSM/I pixels in these 
cases. Hence it is computed for each grid box as the difference of the spatially and temporally 
averaged evaporation and precipitation fields. These averages may contain different numbers 
of observations, as the evaporation is not retrieved for precipitating cases. The largest effect 
on the mean freshwater flux fields by this clear sky by bias is observed over the Southern 
Ocean, the ITCZ, where in 10% to 15% of all SSM/I observations the retrieval of wind speed, 
near surface humidity, and hence evaporation is not possible.  

The systematic omission of potentially extreme deviations from the mean values or from the 
surrounding area may result in unintended biases. However, even under the extreme 
assumption of 100% error for the missed evaporation estimates, this would not result in more 
than about 10-15% error for the monthly mean in the most affected regions (see also 
Validation Report RD 3). 

Since the mean values of the input parameters, evaporation and precipitation are often of the 
same order of magnitude, the resulting values in the freshwater flux fields are sensitive to 
relatively small variations in either of the input parameters. Small errors in one of the input 
parameters may lead to larger deviations in the resulting freshwater flux fields. This effect 
reduces with longer temporal and/or larger spatial averages. 
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7 Glossary 

ATBD Algorithm Theoretical Baseline Document 

ATT Antenna Temperature Tapes 

AVHRR Advanced Very High Resolution Radiometer 

CDOP Continuous Development and Operations Phase 

CM SAF Satellite Application Facility on Climate Monitoring 

COADS Comprehensive Ocean-Atmosphere Data Set 

COARE Coupled Ocean Atmosphere Response Experiment 

DMSP Defense Meteorological Satellite Program 

DRI Delivery Readiness Inspection 

DWD Deutscher Wetterdienst (German MetService) 

ECMWF European Centre for Medium Range Forecast 

ECV Essential Climate Variable 

EPS European Polar System 

EUMETSAT 
European Organisation for the Exploitation 
of Meteorological Satellites 

FMI Finnish Meteorological Institute 

FOV Field of view 

GCOS Global Climate Observing System 

GLOBE The Global Land One-kilometer Base Elevation 

HOAPS-C HOAPS Composite product 

HOAPS-G HOAPS Gridded product 

HOAPS-S HOAPS Scan product 

HOAPS 
The Hamburg Ocean Atmosphere Fluxes and 
Parameters from Satellite data 

IOP Initial Operations Phase 

ITCZ Inter-Tropical Convergence Zone 

KNMI Koninklijk Nederlands Meteorologisch Institut 

MOST Monin-Obukhov similarity theory 

MSG Meteosat Second Generation 

NASA National Aeronautics and Space Administration 

NCEP National Centers for Environmental Prediction 

NDBC National Data Buoy Center 

NESDIS National Environmental Satellite, Data, and Information System 

NOAA National Oceanic & Atmospheric Administration 
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NODC National Oceanographic Data Center 

NWP Numerical Weather Prediction 

PRD Product Requirement Document 

PUM Product User Manual 

RMIB Royal Meteorological Institute of Belgium 

RMS Root Mean Square 

RSMAS Rosenstiel School of Marine and Atmospheric Science 

RSS Remote Sensing Systems 

SAF Satellite Application Facility 

SMHI Swedish Meteorological and Hydrological Institute 

SSM/I Special Sensor Microwave Imager 

SSMIS Special Sensor Microwave Imager Sounder 

SST Sea Surface Temperature 

TAO Tropical Atmosphere/Ocean project 

TDR Temperature Data Records 
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